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ABSTRACT

The risk and return trade-off, the cornerstone of modern asset pricing theory, is often of the wrong sign.

Our explanation is that high-beta assets are prone to speculative overpricing. When investors disagree

about the stock market’s prospects, high-beta assets are more sensitive to this aggregate disagreement,

experience greater divergence of opinion about their payoffs, and are overpriced due to short-sales con-

straints. When aggregate disagreement is low, the Security Market Line is upward-sloping due to risk-

sharing. When it is high, expected returns can actually decrease with beta. We confirm our theory using

a measure of disagreement about stock market earnings.
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There is compelling evidence that high-risk assets often deliver lower expected returns than low-risk

assets. This is contrary to the risk-return trade-off at the heart of neoclassical asset pricing theory. The

high-risk, low-return puzzle literature, which dates back to Black (1972) and Black et al. (1972), shows

that low-risk stocks, as measured by a stock’s co-movement with the stock market or Sharpe (1964)’s

Capital Asset Pricing Model (CAPM) beta, have significantly outperformed high risk stocks over the last

30 years.1 Baker et al. (2011) further show that since January 1968 the cumulative performance of stocks

has actually declined with beta. For instance, a dollar invested in a value-weighted portfolio of the lowest

quintile of beta stocks would have yielded $96.21 ($15.35 in real terms) at the end of December 2010,

while a dollar invested in the highest quintile of beta stocks would have yielded around $26.39 ($4.21 in

real terms). Related, Baker et al. (2011) and Frazzini and Pedersen (2014) both point out that a strategy

of shorting high-beta stocks and buying low-beta stocks generates excess profits as large as famous excess

stock return predictability patterns such as the value-growth or price momentum effects.2

In early work, Black (1972) originally tries to reconcile a flat Security Market Line by relaxing one

of the central CAPM assumptions of borrowing at the risk-free rate. He shows that in the presence

of borrowing constraints, risk-tolerant investors desiring more portfolio volatility will demand high-beta

stocks since they cannot simply lever up the tangency portfolio. However, borrowing constraints can only

deliver a flatter Security Market Line relative to the CAPM, not a downward-sloping one; investors would

not bid up high-beta stock prices to the point of having lower returns than low-beta stocks. Indeed, it is

difficult to get a downward-sloping line even if one introduces noise traders as in Delong et al. (1990) or

liquidity shocks as in Campbell et al. (1993), since noise traders or fundamental risk in these models lead

to higher expected returns.3

In contrast to Black (1972), we provide a theory for the high-risk and low-return puzzle even when

investors can borrow at the risk-free rate. We show that relaxing the other CAPM assumptions of

homogeneous expectations and costless short-selling can deliver rich patterns in the Security Market

Line, including an inverted-U shape or even a downward-sloping line. Our model starts from a CAPM

framework, in which firms’ cash flows follow a one-factor model and there are a finite number of securities

so that markets are incomplete. We allow investors to disagree about the market or common factor of

firms’ cash flows and prohibit some investors from short-selling. Investors only disagree about the mean

of the common factor of cash flows. There are two groups of investors, buyers such as retail mutual funds
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that cannot short and arbitrageurs such as hedge funds that can short.

Substantial evidence supports both of these assumptions. First, there is time-varying disagreement

among professional forecasters’ and households’ expectations about many macroeconomic state variables

such as market earnings, industrial production growth, and inflation (Cukierman and Wachtel (1979),

Kandel and Pearson (1995), Mankiw et al. (2004), Lamont (2002)). Such aggregate disagreement might

emanate from many sources including heterogeneous priors or cognitive biases like overconfidence.4 Sec-

ond, short-sales constraints bind for some investors for institutional reasons rather than due to the physical

cost of shorting.5 For instance, many investors in the stock market such as retail mutual funds, which in

2010 had 20 trillion dollars of assets under management, are prohibited by charter from shorting either

directly (Almazan et al. (2004)) or indirectly through the use of derivatives (Koski and Pontiff (1999)).

Indeed, only a smaller subset of investors, such as hedge funds with 1.8 trillion dollars in assets under

management in 2010, can and do short.

Our main result is that high-beta assets are overpriced compared to low-beta assets when disagreement

about the common factor of firms’ cash flows is high. If investors disagree about the mean of the common

factor, then their forecasts for the payoffs of high-beta stocks will naturally diverge more than their

forecasts for low-beta ones. In other words, beta amplifies disagreement about the macroeconomy. Because

of short-sales constraints, high-beta stocks, which are more sensitive to aggregate disagreement than low-

beta stocks, are only held in equilibrium by optimists, as pessimists are sidelined. This greater divergence

of opinion creates overpricing of high-beta stocks compared to low-beta stocks (Miller (1977) and Chen

et al. (2002)).6 Arbitrageurs attempt to correct this mispricing but their limited risk-bearing capacity

results in limited shorting, leading to equilibrium overpricing.7

That more disagreement on high-beta stocks leads to overpricing of these stocks is far from obvious

in an equilibrium model like ours. Optimistic investors can achieve large exposure to the common factor

by buying high-beta stocks or levering up low-beta ones. If high-beta stocks are overpriced, optimistic

investors should favor the levering up of low-beta assets, which could potentially undo the initial mispric-

ing. The key reason why this does not occur in our model is that when markets are incomplete (which is

implicit in all theories of limits of arbitrage, as in Delong et al. (1990) or Shleifer and Vishny (1997), and

most modern asset pricing models (Merton (1987)), idiosyncratic risk matters for investors’ portfolios.

In our context, while levering up low-beta stocks increases the exposure to the common factor, it also
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magnifies the idiosyncratic risk that investors have to bear. This role of idiosyncratic volatility as a limit

of arbitrage is motivated by a number of empirical papers that show that idiosyncratic risk is the biggest

impediment to arbitrage (Pontiff (1996), Wurgler and Zhuravskaya (2002)). It leads, in equilibrium, to a

situation where levering up low-beta stocks ends up being less efficient than buying high-beta stocks when

speculating on the common factor of firms’ cash flows. In other words, higher beta assets are naturally

more speculative.

Our model yields the following key testable implications. When macro-disagreement is low, all investors

are long and short-sales constraints do not bind. The traditional risk-sharing motive leads high-beta

assets to attract a lower price or higher expected return. For high enough aggregate disagreement, the

relationship between risk and return takes on an inverted-U shape. For assets with a beta below a certain

cutoff, expected returns are increasing in beta as there is little disagreement about these stocks’ cash flows

and therefore short-selling constraints do not bind in equilibrium. But for assets with a beta above an

equilibrium cutoff, disagreement about dividends becomes sufficiently large that the pessimist investors

are sidelined. This speculative overpricing effect can dominate the risk-sharing effect and the expected

returns of high-beta assets can actually be lower than those of low-beta ones. As disagreement increases,

the cutoff level of beta below which all investors are long falls and the fraction of assets experiencing

binding short-sales constraints increases.8

We test these predictions using a monthly time series of disagreement about market earnings. Dis-

agreement about a stock’s cashflow is measured by the standard deviation of analysts’ forecasts of the

long-term growth of earnings per share (EPS), as in Diether et al. (2002). The aggregate disagreement

measure is a beta-weighted average of the stock-level disagreement measure for all stocks in our sample,

similar in spirit to Yu (2011). The weighting by beta in our proxy for aggregate disagreement is sug-

gested by our theory. Stocks with very low beta have by definition almost no sensitivity to aggregate

disagreement, and hence their disagreement should mostly reflect idiosyncratic disagreement. Aggregate

disagreement can be high during both down-markets, like the recessions of 1981 to 1982 and 2007 to

2008, and up-markets, like the dot-com boom of the late 1990s (Figure 1). Panel C of Figure 6 shows the

12-month excess returns on 20 β-sorted portfolios (see Section II.B. for details on the construction of these

portfolios). In months with low aggregate disagreement (defined as the bottom quartile of the aggregate

disagreement distribution and represented by triangles), we see that returns are in fact increasing with

3



beta. However, in months with high aggregate disagreement however (defined as the top quartile of the

disagreement distribution and represented by diamonds), the risk-return relationship has an inverted-U

shape. In these months, the two top and bottom portfolios have average excess returns net of the risk-free

rate of around 0%, while the portfolios around the median portfolio have average excess returns of around

8%. This inverted-U shape relationship is formally estimated in the context of a standard Fama and

Macbeth (1995) analysis where the excess return/beta relationship is shown to be strictly more concave

when aggregate disagreement is large.9

[ Insert Figure 1 here ]

Our baseline analysis assumes that stocks’ cash-flow process is homoskedastic. When we allow for

heteroskedasticity, our main asset pricing equation is slightly modified. Intuitively, a large idiosyncratic

variance makes optimist investors reluctant to demand too much of a stock. Thus, a stock with a large

cashflow beta – and therefore whose expected cash-flow is high from the optimists’ point of view – may

nonetheless have little demand from the optimists if the stock has high idiosyncratic variance. In equi-

librium, this low demand from optimists will drive down the price and make pessimists long this asset.

As a result, such a stock may not experience the same speculative over-pricing as a stock with a similar

cashflow beta but lower idiosyncratic variance. In other words, stocks experience overpricing only when

the ratio of their cashflow beta to idiosyncratic variance is high enough. Below a certain cutoff in this

ratio, stocks are priced as in the CAPM and the partial Security Market Line (the relationship between

expected returns and β for stocks below this cutoff) is upward-sloping and independent of aggregate dis-

agreement. Above the cutoff, the partial Security Market Line has a slope that strictly decreases with

aggregate disagreement. We confirm this additional prediction in the data.

Our findings are consistent with Diether et al. (2002) and Yu (2011), who find that dispersion of

earnings forecasts predicts low returns in the cross-section and for the market return in the time series,

respectively, as predicted in models with disagreement and short-sales constraints. Our particular focus

is on the theory and the empirics of the Security Market Line as a function of aggregate disagreement.

Importantly, we show that the patterns observed in the data are not simply a function of high-beta

stocks performing badly during down markets nor are they a function of high-disagreement stocks under-

performing.
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Finally, in an overlapping generations (OLG) extension of our static model, we show that these pre-

dictions also hold in a dynamic setting where disagreement follows a two-state Markov chain. Investors

anticipate that high-beta assets are more likely to experience binding short-sales constraints in the future

and hence have a potentially higher resale price than low-beta ones relative to fundamentals (Harrison

and Kreps (1978), Morris (1996), Scheinkman and Xiong (2003) and Hong et al. (2006)). Since disagree-

ment is persistent, this pushes up the price of high-beta assets in both the low and high disagreement

states. At the same time, since the price of high-beta assets varies more with aggregate disagreement,

these stocks carry an extra risk premium. We use this dynamic model to show that a basic simulation

of the model can yield economically significant flattenings of the Security Market Line using reasonable

levels of disagreement and risk-aversion among investors.

Our paper proceeds as follows. We present the model in Section I. We describe the data used in our

empirical analysis in Section II. We present the empirical analysis in Section III. We conclude in Section

IV. All proofs are in the Internet Appendix.

I. Model

A. Static Setting

We consider an economy populated with a continuum of investors of mass one. There are two periods,

t = 0, 1. There are N risky assets and the risk-free rate is exogenously set at r. Risky asset i delivers a

dividend d̃i at date 1, which is given by

∀i ∈ {1, . . . , N}, d̃i = d+ biz̃ + ε̃i.

The common factor in stock i’s dividend is z̃, with E[z̃] = 0 and Var[z̃] = σ2
z . The idiosyncratic component

in stock i’s dividend is ε̃i, with E[ε̃i] = 0 and Var[ε̃i] = σ2
ε . By definition, for all i ∈ [1, N ], Cov (z̃, ε̃i) = 0.

The cashflow beta of asset i is bi and assumed to be strictly positive. Each asset i is in supply si = 1
N

and we assume w.l.o.g. that10

0 < b1 < b2 < · · · < bN .
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Assets in the economy are indexed by their cashflow betas, which are increasing in i. The share-weighted

average b in the economy is set to one (
∑N

i=1
bi
N = 1).

Investors are divided into two groups. A fraction α of them hold heterogeneous beliefs and cannot

short. We call these buyers mutual funds (MF), which in practice are prohibited from shorting by charter.

These investors are divided in two groups of mass 1
2 , A and B, who disagree about the mean value of

the aggregate shock z̃. Group A believes that EA[z̃] = λ, while group B believes that EB[z̃] = −λ. We

assume w.l.o.g. that λ > 0 so that investors in group A are the optimists and investors in group B the

pessimists.

A fraction 1−α of investors hold homogeneous and correct beliefs and are not subject to the short-sales

constraint. We index these investors by a (for “arbitrageurs"). For concreteness, one might interpret these

buyers as hedge funds (HF), which can generally short at little cost. That these investors have homo-

geneous beliefs is simply assumed for expositional convenience. Heterogeneous priors for unconstrained

investors wash out in the aggregate and have thus no impact on equilibrium asset prices in our model.

Investors maximize their date-1 wealth and have mean-variance preferences:

U(W̃ k) = Ek[W̃ k]− 1

2γ
V ar(W̃ k),

where k ∈ {a,A,B} and γ is investors’ risk tolerance. Investors in group A or B maximize under the

constraint that their holding of stocks has to be greater than zero.

B. Equilibrium

The following theorem characterizes the equilibrium.

Theorem 1: Let θ =
α
2

1−α
2
and define (ui)i∈[0,N+1] such that uN+1 = 0,

ui = 1
γNbi

(
σ2
ε + σ2

z

(∑
j<i b

2
j

))
+ σ2

z
γ

(∑
j≥i

bj
N

)
for i ∈ [1, N ], and u0 = ∞. u is a strictly decreasing

sequence. Let ī = min {k ∈ [0, N + 1] | λ > uk}. There exists a unique equilibrium, in which asset prices

are given by

Pi(1 + r) =





d− 1

γ

(
biσ

2
z +

σ2
ε

N

)
for i < ī

d− 1

γ

(
biσ

2
z +

σ2
ε

N

)
+
θ

γ

(
biσ

2
zω(λ)− σ2

ε

N

)

︸ ︷︷ ︸
πi=speculative premium

for i ≥ ī , (1)
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where ω(λ) =
λγ−σ

2
z
N (
∑
i≥ī bi)

σ2
z

(
1+σ2

z

(∑
i<ī

b2
i
σ2
ε

)) .
Proof. See Internet Appendix Section I.A.

The main intuition underlying the equilibrium is that there is more disagreement among investors about

the expected dividends of high-bi assets relative to low-bi assets. Above a certain level of bi (bi ≥ bī),

investors sufficiently disagree that the pessimists, that is, investors in group B, would optimally short

these stocks. However, this is impossible because of the short-sales constraint. These high-b stocks thus

experience a speculative premium since their price reflects disproportionately the belief of the optimists,

that is, investors in group A. As aggregate disagreement grows, the cash-flow beta of the marginal asset

— the asset above which group B investors are sidelined — decreases and a larger fraction of assets

experiences overpricing.11

We can derive a number of comparative static results regarding this equilibrium. The first relates to

overpricing. When short-sales constraints are binding, that is, for assets i ≥ ī, the difference between

the equilibrium price and the price that would prevail in the absence of short-sales constraints (i.e., when

mutual funds can short without restriction or when α = 0) is given by

πi =
θ

γ

(
biσ

2
zω(λ)− σ2

ε

N

)
. (2)

This term, which we call the speculative premium, captures the degree of overpricing due to the short-

sales constraints. The following corollary explores how this speculative premium varies with aggregate

disagreement, cash-flow betas, and the fraction of agents that face short-sales constraints.

Corollary 1: Assets with high cash-flow betas, that is, i ≥ ī, are overpriced (relative to the benchmark

with no short-sales constraints or when α = 0) and the amount of overpricing, defined as the difference

between the price and the benchmark price in the absence of short-sales constraints, is increasing with

disagreement λ, with cash-flow betas bi, and with the fraction of investors that are short-sales constrained

α. Furthermore, an increase in aggregate disagreement λ leads to a larger increase in mispricing for assets

with larger cash-flow betas.

Proof. See Internet Appendix Section I.B.
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The second comparative static we consider relates to the holdings observed in equilibrium. Remember

that hedge funds (i.e. investors in group a) are not restricted in their ability to short. Intuitively, hedge

funds short assets with large mispricing, that is, high-b assets. As aggregate disagreement increases, mis-

pricing increases, so that hedge funds end up shorting more. Since an increase in aggregate disagreement

leads to a larger relative increase in mispricing for higher-b stocks, the corresponding increase in shorting

is also larger for high-b stocks. In other words, there is a weakly increasing relationship between shorting

by hedge funds and b. Provided that λ is large enough, this relationship becomes strictly steeper as

aggregate disagreement increases. We summarize these comparative statics in the following corollary.

Corollary 2: Group A investors are long all assets. Group B investors are long assets i < ī − 1 and

have zero holdings of assets i ≥ ī. There exists λ̂ > 0 such that, provided λ > λ̂, there exists ĩ ∈ [̄i,N ]

such that (1) group a investors short high cash-flow beta assets, that is, assets i ≥ ĩ (2) the dollar amount

of stocks being shorted in equilibrium increases with aggregate disagreement λ, and (3) the sensitivity of

shorting to aggregate disagreement is higher for high cash-flow beta assets.

Proof. See Internet Appendix Section I.C.

C. Beta and Expected Return

We now restate the equilibrium in terms of expected excess returns and relate them to the familiar

market β from the CAPM. We denote by r̃ei the excess return per share for asset i and by R̃em the excess

return per share for the market portfolio. The market portfolio is defined as the portfolio of all assets in

the market. The value of the market portfolio is Pm =
∑N

j=1 sjPj =
∑N

j=1
Pj
N since we have normalized

the supply of stocks to 1
N . Then, by definition,

R̃ei = d+ biz̃ + ε̃i − (1 + r)Pi and R̃em =

N∑

i=1

siR̃
e
i =

N∑

i=1

1

N
R̃ei = d+ z̃ +

N∑

i=1

ε̃i
N
− (1 + r)Pm.

Define βi =
Cov(R̃ei ,R̃em)
V ar(R̃em)

=
biσ

2
z+

σ2
ε
N

σ2
z+

σ2
ε
N

to be the stock market beta of stock i. By definition, the expected

excess return per share of stock i is simply given by

E[R̃ei ] = d− (1 + r)Pi.
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Using Theorem 1, we can express this expected excess return per share on stock i as follows:12.

E[R̃ei ] =





βi
σ2
z + σ2

ε
N

γ
for i < ī

βi
σ2
z + σ2

ε
N

γ
(1− θω(λ)) + θ

σ2
ε

γN
(1 + ω(λ)) for i ≥ ī

. (3)

This representation follows directly from Theorem 1: we simply express the price of asset i as a function

of the market beta of asset i, βi. For α = 0 (and hence θ = 0), investors have homogeneous beliefs and

thus λ does not affect the expected returns of the assets. In fact, when α = 0, there are no binding

short-sales constraints, so ī = N + 1 and we can simply rewrite for all i ∈ [1, N ]: E[R̃ei ] = βiE[R̃em], that

is, the standard CAPM formula. However, when a fraction α > 0 of investors are short-sales constrained

and aggregate disagreement is large enough, ī ≤ N and the expected return per share for assets i ≥ ī

depend on aggregate disagreement λ.

More precisely, the Security Market Line is then piecewise linear. For low-beta assets (βi < βī),

expected excess returns are solely driven by risk-sharing: higher-β assets are more exposed to market

risk and thus command a higher expected return. When β crosses a certain threshold (β ≥ βī), however,

expected excess returns are also driven by speculation, in the sense that pessimists are sidelined from these

high-beta stocks: over this part of the Security Market Line, higher-beta assets, which are more exposed

to aggregate disagreement, command a larger speculative premium and thus receive smaller expected

returns than what they would absent disagreement. Note that provided λ is large enough, the Security

Market Line can even be downward-sloping over the interval [βī, βN ], that is, for speculative assets.

We illustrate the role of aggregate disagreement on the shape of the Security Market Line in Figure

2, where the Security Market Line is plotted for three possible levels of λ: λ0 < λ1 < λ2. The Security

Market Line is simply the 45-degree line when λ = λ0 = 0 as seen in Panel A of Figure 2). We assume that

λ1 is large enough that a strictly positive fraction of assets experience binding short-sales constraints and

hence speculative mispricing (assets above ī): expected returns are increasing with beta but at a lower

pace for assets above the endogenous marginal asset ī (Figure 2, Panel B). When λ = λ2 > λ1 (Figure 2,

Panel C), the slope of the Security Market Line for assets i ≥ ī is negative, that is, the Security Market

Line has an inverted-U shape.

[ Insert Figure 2 here ]
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In our empirical analysis below, we approach the relationship between expected excess returns and β

by looking at the concavity of the Security Market Line and how this concavity is related to our empirical

proxy for aggregate disagreement. More precisely, for each month we estimate a cross-sectional regression

of realized excess returns of 20 β-sorted portfolios on the portfolio β and the portfolio β2. The time series

of the coefficient estimate on β2 represents a time series of returns that essentially goes long the low-

and high-beta portfolios and short the portfolios around the median-beta portfolio. In effect, the Security

Market Line described in Equation (3) predicts that this square portfolio should experience lower returns

when aggregate disagreement is high, or in other words, that the Security Market Line should be more

concave when aggregate disagreement is high. This is our first main empirical prediction.

Prediction 1: In low-disagreement months, the Security Market Line is upward-sloping. In high-disagreement

months, the Security Market Line has a kink, with its slope is strictly positive for low-β assets but strictly

lower (and potentially negative) for high-β assets. The Security Market Line should be more concave fol-

lowing months with high aggregate disagreement; equivalently, a portfolio long low- and high-beta assets

and short medium-beta assets should experience lower performance following months of high aggregate

disagreement.

A consequence of the previous analysis is that the slope of the Security Market Line should also

decrease following a month of high aggregate disagreement. However, this is a weaker prediction of the

model since it does not exploit the specificity of our model, namely, the kink in the Security Market Line,

which, as we will see in Section III, is an important feature of the data.

Corollary 3: Let µ̂ be the coefficient estimate of a cross-sectional regression of realized returns
(
R̃ei

)
i∈[1,N ]

on (βi)i∈[1,N ] and a constant. The coefficient µ̂ decreases with aggregate disagreement λ and with the frac-

tion of short-sales-constrained agents in the economy α. Furthermore, the negative effect of aggregate

disagreement λ on µ̂ is larger when there are fewer arbitrageurs in the economy (i.e., when α increases).

Proof. See Internet Appendix Section I.E.

D. Discussion of Assumptions

Our theory relies on two fundamental ingredients, disagreement and short-sales constraints. Both are

important. In the absence of disagreement, all investors share the same portfolio and, since there is a
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strictly positive supply of assets, this portfolio is long only. Thus, the short-sales constraint is irrelevant

– it never binds – and the standard CAPM results apply. In the absence of short-sales constraints, the

disagreement between group A and group B investors washes out in the market-clearing condition and

prices simply reflect the average belief, which we have assumed to be correct.

The model also relies on important simplifying assumptions. First is that, in our framework, investors

disagree only on the expectation of the aggregate factor, z̃. A more general setting would allow investors

to also disagree on the idiosyncratic component of stock dividends ε̃i. If the idiosyncratic disagreement

on a stock is not systematically related to the stock’s cash-flow beta, then our analysis is left unchanged

since whatever mispricing is created by idiosyncratic disagreement does not affect the shape of the Security

Market Line in a systematic fashion. If idiosyncratic disagreement is positively correlated with stocks’

cash-flow beta, then the impact of aggregate disagreement on the Security Market Line becomes even

stronger. This is because there are now two sources of overpricing linked systematically with bi, one

coming from aggregate disagreement, and the other from this additional idiosyncratic disagreement.

As we show in Section II.C below, the overall disagreement on the earnings growth of high-beta stocks

is much larger than the disagreement on low-beta stocks, even in months with low aggregate disagreement.

This finding suggests that idiosyncratic disagreement is in fact larger for high-beta stocks. This conforms

to standard intuition on the characteristics of high- and low-beta stocks.

The second key assumption in the model is that investors disagree only on the first moment of the

aggregate factor z̃ and not on the second moment σ2
z . From a theoretical viewpoint, this is not so different.

In the same way that β scales disagreement regarding z̄, β scales disagreement about σ2
z . In other words, if

we label the group that underestimates σ2
z as optimists and the group that overestimates σ2

z as pessimists,

then optimists are more optimistic about the utility derived from holding a high-β asset than a low-β asset

while pessimists are more pessimistic about the utility derived from holding a high-β asset than a low-β

asset. Again, high-β assets are more sensitive to disagreement about the variance of the aggregate factor

σ2
z than are low-β assets. As in our model, this would naturally lead to high β stocks being overpriced

when the disagreement about σ2
z is large. However, while empirical proxies for disagreement about the

mean of the aggregate factor can be constructed, it is not clear how one would proxy for disagreement

about its variance.

The third key assumption imposed by the model is that the dividend process is homoskedastic. In
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the next section, we relax this assumption and allow the dividend process of different assets to have

heterogeneous levels of idiosyncratic volatility.

E. Heteroskedastic Idiosyncratic Variance

Our results in Theorem 1 in the static case are derived under the assumption that idiosyncratic shocks

to the dividend process are homoskedastic, that is, ∀i ∈ [1, N ], σ2
i = σ2

ε . This assumption is easily

relaxed. When dividends are assumed to be heteroskedastic, assets need to be ranked in ascending order

of bi
σ2
i
, which is equivalent to ranking them in ascending order of βi

σ2
i
. In Internet Appendix Section I.A we

show that the unique equilibrium then features a marginal asset ī, such that

E[R̃ei ] =





βi
σ2
z +

∑N
j=1

σ2
j

N2

γ
for

βi
σ2
i

<
βī
σ2
ī

βi
σ2
z +

∑N
j=1

σ2
j

N2

γ
(1− θω(λ)) + θ

σ2
i

γN
(1 + ω(λ)) for

βi
σ2
i

≥ βī
σ2
ī

. (4)

Intuitively, consider a stock with a high cash-flow beta. Relative to pessimists, optimistic investors

believe this stock is likely to have a high dividend. If the stock has low idiosyncratic variance (σ2
i ), this will

lead to high demand from optimists for this stock. In equilibrium, this will sideline pessimists from the

stock and lead to speculative overpricing. However, if the stock has high idiosyncratic variance, optimists

will be reluctant to demand large quantities of the stock despite their optimistic valuation. As a result,

pessimists may be required to be long the stock in equilibrium, in which case the stock will be fairly

priced. Thus, the equilibrium features a cutoff in the ratio of cash-flow beta to idiosyncratic variance.

In particular, the pricing formula in Equation (4) says that for stocks i with βi/σ2
i below the cut-off

βī/σ
2
ī
(i.e., nonspeculative stocks), the slope of the partial Security Market Line (the relationship between

expected returns and β for assets below the cutoff) does not depend on aggregate disagreement. For stocks

i with a ratio βi/σ2
i above this cutoff (i.e., speculative stocks), the partial Security Market Line is still

linear in β but its slope is strictly decreasing with aggregate disagreement. The asset pricing equation (4)

also predicts that for these mispriced assets, idiosyncratic variance is priced and the price of idiosyncratic

risk increases with aggregate disagreement. This is related to the previous intuition: all else equal, an

asset with high idiosyncratic variance will receive smaller demand by optimists, which in equilibrium will

drive down its price and drive up it expected return. This leads to our second main empirical prediction.
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Prediction 2: Define speculative assets as assets with a high ratio of βi/σ2
i . Then the slope of the

relationship between expected returns and β for these assets decreases strictly with aggregate disagreement.

Conversely, for nonspeculative assets – assets with a low ratio of βi/σ2
i – the relationship between expected

returns and β is independent of aggregate disagreement.

F. Infinite Number of Assets

We analyze the case in which markets become complete and N goes to infinity. To simplify the

discussion, we assume that for any N , the number of assets, assets in the cross-section always have cash-

flow betas that are bounded in [b, b̄]. We adapt our previous notation to denote by bNi the cash-flow beta

of asset i when the cross-section has N assets, with i ≤ N . Our assumption is that for all N ∈ N and

i ≤ N, 0 < b < bNi < b̄ <∞. Under this assumption, we show that in the limiting case, where N →∞,

asset returns always admit a linear CAPM representation. In particular, the slope of the Security Market

Line is independent of λ as long as λ ≤ σ2
z
γ and is strictly decreasing with λ when λ > σ2

z
γ .

Since uNi = 1
γNbNi

(
σ2
ε + σ2

z

(∑
j<i (bNj )2

))
+ σ2

z
γ

(∑
j≥i

bNj
N

)
and the bi are bounded, it is direct to

see that when N → ∞, uN1 → σ2
z
γ and uNN → lσ

2
z
γ , where l = limN→∞

∑
j<N

(bNj )2

NbNN
and l < 1 since for all

j < N , bNj < bNN .

Our first result is that if λ is small enough (i.e., λγ < lσ2
z = γ limuNN ), then at the limit N →∞, no

asset will experience binding short-sales constraints, so that asset returns will be independent of λ and

the standard CAPM formula will apply: E[R̃ei ] = βiE[R̃em], with E[R̃em] independent of λ.

Our second result is that, provided λ is large enough (i.e., λγ > σ2
z = γ limuN1 ), then at the limit, all

assets will experience binding short-sales constraints. In this case, expected returns at the limit are given

by

E[R̃ei ] = βi

(
(1 + θ)

σ2
z

γ
− λθ

)
= βiE[R̃em(λ)].

The Security Market Line is linear as in the previous case, but its slope is now strictly decreasing with

aggregate disagreement λ. In particular, if λγ > 1+θ
θ σ2

z , then the Security Market Line is strictly decreas-

ing.

The final case occurs when σ2
z > λγ > lσ2

z . For any finite i , we know that limuNi = σ2
z
γ . Thus, at the

limit the marginal asset has to be such that lim īN =∞. But, we know that ω(λ)→ 0, so the speculative

premium at the limit is also zero. As a result, at the limit, asset returns will be independent of λ and the
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standard CAPM formula will again apply: E[R̃ei ] = βiE[R̃em], with E[R̃em] independent of λ.

G. Dynamics

G.1. Set-up

We now consider a dynamic extension of the previous model, where we also allow for heteroskedasticity

in dividend shocks. This extension is done in the context of an overlapping generation framework. Time

is infinite, t = 0, 1, . . .∞. Each period t, a new generation of investors of mass one is born and invests in

the stock market to consume the proceeds at date t + 1. Thus, at date t, the new generation is buying

assets from the current old generation (born at date t−1), which has to sell its entire portfolio in order to

consume. Each generation consists of two groups of investors: arbitrageurs, or hedge funds, in proportion

1 − α, and mutual funds in proportion α. Investors have mean-variance preferences with risk tolerance

parameter γ. There are N assets, whose dividend process is given by

d̃it = d+ biz̃t + ε̃it,

where E[z̃] = 0, Var[z̃] = σ2
z , E[ε̃i] = 0, Var[ε̃i] = σ2

i , and
1
N

∑N
i=1 bi = 1. We normalize the assets to be

ranked in ascending order of bi
σ2
i
:

0 <
b1
σ2

1

<
b2
σ2

2

< · · · < bN
σ2
N

.

The timeline of the model appears in Figure 3. Mutual funds born at date t hold heterogeneous beliefs

about the expected value of z̃t+1. Specifically, there are two groups of mutual funds: investors in group A

– the optimists – whose expectations about z̃t+1 are such that EAt [z̃t+1] = λ̃t, and investors in group B –

the pessimists – whose expectations about z̃t+1 are such that EB[z̃t+1] = −λ̃t.13 Finally, we assume that

λ̃t ∈ {0, λ > 0} is a two-state Markov process with persistence ρ ∈]1/2, 1[.

[ Insert Figure 3 here ]

Call P it (λ̃) the price of asset i at date t when realized aggregate disagreement is λ̃t ∈ {0, λ}, and define

∆P it = P it (λ) − P it (0). Let µki (λ̃t) be the number of shares of asset i purchased by investors in group k

when realized aggregate disagreement is λ̃t ∈ {0, λ}, and let λkt be the realized belief at date t for investors

in group k ∈ {a, A, B}.14 We first compute the date-t + 1 wealth of investors in group k ∈ {a, A, B},
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born at date t and with portfolio holdings
(
µki (λ̃t)

)
i∈[1,N ]

:

W̃ k
t+1 =


∑

i≤N
µki (λ̃t)bi


 z̃t+1 +

∑

i≤N
µki (λ̃t)ε̃

i
t+1 +

∑

i≤N
µki (λ̃t)

(
d+ P it+1(λ̃t+1)− (1 + r)P it (λt)

)

Thus, for investors in group k, their own expected wealth at date t + 1 and its associated variance are

given by





Ek[W̃ k] =


∑

i≤N
µki (λ̃t)bi


λkt +

∑

i≤N
µki (λ̃t)

(
d+ E[P it+1(λ̃t+1)|λ̃t]− (1 + r)P it (λt)

)

V ar[W̃ k] =


∑

i≤N
µki (λ̃t)bi




2

σ2
z +

∑

i≤N
(µki (λ̃t))

2σ2
i + ρ(1− ρ)


∑

i≤N
µki (λ̃t)

(
∆P it+1

)



2 .

Relative to the static model, there are two notable changes. First, investors value the resale price of

their holding at date 1 (the E[P it+1(λ̃t+1)|λ̃t] term in expected wealth). Second, investors now bear the

corresponding risk that the resale prices move with aggregate disagreement λ̃t (this is, in our binomial

setting, the ρ(1− ρ)
(∑

i≤N µ
k
i (λ̃t)

(
∆P it+1

))2
term in wealth variance).

G.2. Equilibrium

The following theorem characterizes the equilibrium of this economy.

Theorem 2: Define (vi)i∈[0,N+1] such that vN+1 = 0, vi = σ2
z
N

(∑
k≥i bk

)
+ 1

N
σ2
i
bi

(
1 + σ2

z

∑
k<i

b2k
σ2
k

)
for

i ∈ [1, N ], and v0 = ∞. The sequence v is strictly decreasing. Let ī = min {k ∈ [0, N + 1] | λ > vk}.

There exists a unique equilibrium. In this equilibrium, short-sales constraints bind only for the group of

pessimist investors (i.e., group B) in the high disagreement states (λ̃t = λ > 0) for assets i ≥ ī. The

speculative premium on these assets is given by

πj =
θ

γ


bj

λγ − σ2
z
N

∑
k≥ī bk

1 + σ2
z

(∑
i<ī

b2i
σ2
i

) −
σ2
j

N


 .
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Finally, define

Γ? =
−(1 + r) + (2ρ− 1) +

√
((1 + r)− (2ρ− 1))2 + 4

N
θρ(1−ρ)

γ

∑
j≥ī π

j

2 θρ(1−ρ)
γ

> 0.

In equilibrium, asset returns are given by



E[Rj(λ)] = E[Rj(0)] =
1

γ

(
bjσ

2
z +

σ2
i

N

)
for j < ī

E[Rj(0)] =
1

γ

(
bjσ

2
z +

σ2
i

N
+ ρ(1− ρ)

Γ?

(1 + r)− (2ρ− 1) + θρ(1−ρ)
γ

Γ?
πj
)

for j ≥ ī

E[Rj(λ)] =
1

γ

(
bjσ

2
z +

σ2
i

N
+ ρ(1− ρ)

Γ?

(1 + r)− (2ρ− 1) + θρ(1−ρ)
γ

Γ?
πj
)
− 1 + r − (2ρ− 1)

(1 + r)− (2ρ− 1) + θρ(1−ρ)
γ

Γ?
πj for j ≥ ī.

Proof. See Internet Appendix Section I.F.

Our characterization of how disagreement affects the Security Market Line in our static model still

carries over to this dynamic model with heteroskedasticity. Low b/σ2 assets (i.e., j < ī) are never shorted

since there is not enough disagreement among investors to make the pessimist investors willing to go short,

even in the high-disagreement states. Thus, the price of these assets is the same in both states of nature

and similar to the standard CAPM case. In the high-aggregate-disagreement state (λ̃ = λ > 0), pessimist

investors, that is, investors in group B, want to short high-b assets to the extent that these assets are not

too risky (i.e., assets j such that bj
σ2
j
≥ bī

σ2
ī

), but are prevented from doing so by the short-sale constraint.15

This leads to overpricing of these assets relative to the benchmark without disagreement.

A consequence of the previous analysis is that the price of assets j ≥ ī depends on the realization of ag-

gregate disagreement. There is an extra source of risk embedded in these assets: their resale price is more

exposed to aggregate disagreement. These assets are thus riskier and command an extra risk premium rel-

ative to lower-b assets. This extra risk premium takes the form 1
γρ(1−ρ) Γ?

(1+r)−(2ρ−1)+
θρ(1−ρ)

γ
Γ?
πj . Relative

to a benchmark without disagreement (and where expected returns are always equal to 1
γ

(
bjσ

2
z +

σ2
i
N

)
),

high-b assets have higher expected returns in low-disagreement states (because of the extra risk premium).

In high-disagreement states, holding σ2 constant, the expected returns of high-b assets are strictly lower

than in low-disagreement states, since the large disagreement about next-period dividends leads to over-

pricing. Thus, in high-disagreement states, the slope of the relationship between expected returns and

cash-flow betas holding σ2 constant is smaller for assets with a high ratio of cash-flow beta to idiosyn-
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cratic variance (i.e., assets j ≥ ī) than assets j <≥> ī. Whether the expected returns of high-b assets are

lower or higher than in the benchmark without disagreement depends on the relative size of the extra risk

premium and the speculative premium. In the data, however, aggregate disagreement is persistent, that

is, ρ is close to one. A first-order Taylor expansion of Γ? around ρ = 1 gives Γ? ≈ ∑j≥ī
πj
N , so that in

the vicinity of ρ = 1, E[Rj(λ)] < 1
γ

(
bjσ

2
z +

σ2
j

N

)
. Intuitively, when aggregate disagreement is persistent,

the resale price risk is very limited, since there is only a small probability that the price of high-b assets

will change next period. Thus, the speculative premium term dominates and expected returns of high-b

assets are lower than under the no-disagreement benchmark. We summarize these findings in the following

proposition.

Corollary 4:

(i) In low-disagreement states (λ̃ = 0), conditional on σ2
i , expected returns ERej are strictly increasing

with cash-flow beta bj. Because of resale price risk, the slope of the return/cash-flow beta relationship is

higher for assets j ≥ ī than for assets j < ī.

(ii) In high-disagreement states (λ̃ = λ > 0), conditional on σ2
i , expected returns ERej are strictly increasing

with cash-flow beta bj for assets j < ī. For assets j ≥ ī, the slope of the return/cash-flow beta relationship

can be either higher or lower than for assets j < ī. There exists ρ? < 1 such that for ρ ≥ ρ?, this slope is

strictly lower for b ≥ bī than for b < bī.

(iii) Conditional on σ2
i , expected returns ERej can decrease strictly with cash-flow beta bj for assets j ≥ ī

in high-disagreement states, provided ρ is close to one and λ is large enough.

(iv) Conditional on σ2
i , the slope of the returns/cash-flow beta relationship for assets j ≥ ī is strictly lower

in high-disagreement states (λ̃ = λ > 0) than in low-disagreement states (λ̃ = 0).

Proof. See Internet Appendix Section I.G.

H. Calibration

In this section, we present a simple calibration of the dynamic model presented in the previous section.

The objective of this calibration is to see what magnitude of aggregate disagreement is required to obtain
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a significant distortion in the Security Market Line. We use the following parameters. First, ρ is set

to 0.95. This estimate is obtained by dividing our time series into high and low aggregate disagreement

months (i.e., above and below the median of aggregate disagreement) and computing the probability of

transitioning from high to low disagreement (P = 0.05) and from low to high disagreement (P = 0.05).

We set α to 0.66 (i.e., θ = 0.5), which corresponds to the fraction of the stock market held by mutual

funds and retail investors, for which the cost of shorting is presumably nontrivial.

The most difficult parameter for us to set is N . We show in Section I.F that when N is large, the

Security Market Line can be upward- or downward-sloping but not inverted-U shaped. However, we argue

that a large N is not a good calibration for our model. In the presence of such fixed costs, investors

will trade a much smaller number of assets than the overall number of assets in the market. Of course,

introducing fixed costs of trading in our model complicates the analysis substantially. We defer a full

treatment of this more complex model to further research. In particular, with fixed trading costs, the

choice of which asset to trade becomes endogenous. We believe, however, that the main elements of our

analysis would remain unchanged and we highlight here how this endogenous asset selection affects our

analysis.

When investors face fixed trading costs, in equilibrium, there is a segmentation of the market. All else

equal, optimists would tend to buy the segment of high-cash-flow beta assets, as opposed to our current

model with no trading costs where they trade all assets. While pessimists would only trade on the segment

of low-beta assets, as in our model, one notable difference with our current setup is that the pessimists

would now be the only investors holding these low-beta assets. As a consequence, the low-beta assets

would be underpriced. This effect would reinforce our results as the underpriced low-beta securities would

make the Security Market Line “kinkier”.

With fixed trading costs, arbitrageurs also need to decide which assets to trade. First, in equilibrium,

they need to hold the segment of intermediate-cash-flow beta securities. To the extent that mispricing

on high- and low-beta assets is not large – that is, aggregate disagreement λ is not too large – the

risk premium they receive for holding these intermediate-beta assets will be greater than the arbitrage

premium they would receive from shorting the high-beta securities. As disagreement λ increases, a fraction

of arbitrageurs will start shorting the high-beta assets. In this case, arbitrageurs engage in shorting in

an amount such that the utility they derive from shorting the high-beta stocks is equal to the utility of
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holding the intermediate-beta stocks. Thus, as λ increases, the amount of arbitrage capital devoted to

shorting the high-beta stocks increases. At the same time, however, optimistic mutual funds increase their

leverage to bet on high-beta stocks. This increase in optimistic mutual funds’ demand may well dominate

the effect of increased shorting by arbitrageurs.16

Beyond trading costs, there exist additional reasons why mutual fund managers invest among a re-

stricted set of stocks. Most mutual fund managers are benchmarked to indices, such as the Morningstar

Large Cap Growth Index or the Russell 1000 Growth Index. These indices typically have only a few hun-

dred stocks as constituent members. Hence, because of their index or tracking mandates, most mutual

fund managers form their portfolios based on a universe of only a few hundred stocks. Retail investors

also trade within a restricted universe of stocks, as it is well known that these investors typically consider

buying stocks that they are familiar with, such as stocks headquartered near where they live or stocks

with a high advertising presence (Huberman (2001) or Barber and Odean (2008)). To the extent that the

betas of the securities these investors consider are evenly distributed, our model can be directly applied

using the average number of stocks held by each investor as the N in our model.

Consistent with N being small for mutual fund investors, Griffin and Xu (2009) shows that from 1980

to 2004, which overlaps with our sample period, the average number of stocks held by mutual funds is

between 43 and 119. Consistent with N being even smaller for retail investors, Kumar and Lee (2006)

documents, using a dataset from a large U.S. retail broker in the 1990s, that the average retail investor

holds a four-stock portfolio. Fewer than 5% of retail investors hold more than 10 stocks.

As noted in Barber and Odean (2000), in 1996, approximately 47% of equity investments in the U.S.

were held directly by households and 14% by mutual funds, although these shares change quite a bit over

time. As such, N = 50 seems in the relevant range for the typical number of stocks held by long only

investors. The calibration we perform below is not very sensitive to small changes in N around N = 50.17

As expected, however, when N becomes very large, we get the result we derived theoretically in Section

I.F when solving the complete market case: the Security Market Line can be upward- or downward-sloping

but not inverted-U shaped as is the case when N is smaller and in the calibration we perform below.

We set the values of bi such that bi = 2i
N+1 . Thus, cash-flow betas are bounded between zero and

two and have an average value of one. We implement our calibration as followings. We set a value for λ.

We then find the values for σ2
z , σ2

ε , and γ such that the model matches the following empirical moments,
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computed over the 1981 to 2011 period: (i) the average volatility of the monthly market return (0.2%

monthly) (ii) the average idiosyncratic variance of monthly stock returns (3.5% monthly) and (iii) the

average expected excess return of the market (0.63% monthly).18 Finally, we borrow from Campbell et al.

(1993) and calibrate a CARA model using dollar returns by setting the dividend to have an asset price

equal to one. We report four calibrations in Figure 4:

1. λ = 0.008, which implies σ2
ε = 0.0305, σ2

z = 0.0014 and γ = 0.32. In equilibrium, 38 of the 50 assets

are shorted. This level of disagreement corresponds to 20% of σz. Figure 4(a) plots the Security

Market Line for these parameter values. Figure 4(a) shows that for this level of disagreement, the

distortion in the Security Market Line is limited. Even in the high-aggregate-disagreement state,

the Security Market Line is upward-sloping with a slope close to its slope in the low-aggregate-

disagreement state.

2. λ = 0.013, which implies σ2
ε = 0.0305, σ2

z = 0.0013 and γ = 0.31. In equilibrium, 45 of the 50

assets are shorted. This level of disagreement corresponds to 35% of σz. Figure 4(b) shows that for

this level of disagreement, the distortion in the Security Market Line becomes noticeable. In the

high-aggregate-disagreement state, the Security Market Line is still upward-sloping for all β, but

with a much smaller slope for assets with bi ≥ bī. The Security Market Line is kink-shaped in the

high-aggregate-disagreement state.

3. λ = 0.022, which implies σ2
ε = 0.0305, σ2

z = 0.0011 and γ = 0.27. In equilibrium, 47 of the 50 assets

are shorted. This level of disagreement corresponds to 65% of σz. Figure 4(c) shows that for this

level of disagreement, in the high-aggregate-disagreement state, the Security Market Line has an

inverted-U shape.

4. λ = 0.05, which implies σ2
ε = 0.0305, σ2

z = 0.0005 and γ = 0.16. In equilibrium, 48 of the 50

assets are shorted. This level of disagreement corresponds to 187% of σz. Figure 4(d) shows that

for this level of disagreement, in the high-aggregate-disagreement state, the Security Market Line is

downward-sloping. Moreover, we also see in Figure 4(d) that assets with beta greater than 0.9 have

a negative expected excess return in the high-aggregate-disagreement state.

Overall, these calibrations support the idea that for reasonable levels of disagreement, the Security
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Market Line in the high-aggregate-disagreement state will be significantly distorted relative to the low-

aggregate-disagreement state.

[ Insert Figure 4 here ]

II. Data and Variables

A. Data Source

The data in this paper are collected from two main sources. U.S. stock return data come from the

CRSP tape, and analyst forecasts come from the I/B/E/S analyst forecast database. The I/B/E/S data

start in December 1981.

We begin with all available common stocks on CRSP between December 1981 and December 2014.

Then, for each month, we exclude penny stocks with a share price below $5 and microcaps, defined as stocks

in the bottom two deciles of the monthly market capitalization distribution using NYSE breakpoints. The

betas are computed with respect to the value-weighted market returns provided on Ken French’s website.

Excess returns are in excess of the U.S. Treasury bill rate, which we also download from Ken French’s

website. We use analyst forecasts of the EPS long-term growth rate (LTG) as our main proxy for investors’

beliefs regarding the future prospects of individual stocks. These data come from the I/B/E/S database.

As explained in detail in Yu (2011), the long-term forecast has several advantages. First, it features

prominently in valuation models. Second, it is less affected by a firm’s earnings guidance than short-term

forecasts. Because the long-term forecast is an expected growth rate, it is directly comparable across firms

or over time.

B. β-sorted portfolios

We follow the literature in constructing beta portfolios as follows. Each month, we use the past 12

months of daily returns to estimate the market beta of each stock in that cross-section. This is done by

regressing a stock’s excess return on the contemporaneous excess market return as well as five lags of the

market return to account for the illiquidity of small stocks (Dimson (1979)). Our measure of β is then

the sum of the six OLS coefficients.
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We next sort stocks each month into 20 β portfolios based on these pre-ranking betas, using only

stocks in the NYSE to define the β thresholds. We compute the daily returns on these portfolios, both

equal- and value-weighted. Post-ranking β’s are then estimated using a similar market model – regressing

each portfolio’s daily return on the excess market return, as well as five lags of the market return, and

adding up these six OLS coefficients. The post-ranking β’s are computed using the full sample period

(Fama and French (1992)). Table I presents descriptive statistics for the 20 β-sorted portfolios. The 20

β-sorted portfolios exhibit a significant spread in β, with the post-ranking full-sample β of the bottom

portfolio equal to 0.43 and that of the top portfolio equal to 1.78.

[ Insert Table I here ]

C. Measuring Aggregate Disagreement

Our measure of aggregate disagreement is similar in spirit to Yu (2011). We first measure stock-

level disagreement is measured as the dispersion in analyst forecasts of the EPS long-term growth rate

(LTG). We then aggregate this stock-level disagreement measure, weighting each stock by its pre-ranking

β.19 Intuitively, our model suggests that there are two components to the overall disagreement on a

stock dividend process: a component coming from the disagreement about the aggregate factor z̃ – the

λ in our model – and a component coming from disagreement about the idiosyncratic factor ε̃i. We are

interested in constructing an empirical proxy for the first component only. To that end, disagreement

about low-β stocks should only play a minor role since disagreement about a low-β stock has to come

mostly from idiosyncratic disagreement – in the limit, disagreement about a β = 0 stock can only come

from idiosyncratic disagreement. Thus, we weight each stock’s disagreement by the stock’s pre-ranking

β.20

To assess the robustness of our analysis, we use two alternative proxies for aggregate disagreement.

The first of these alternative measures is the analyst forecast dispersion of Standard & Poor’s (S&P)

500 index annual EPS. The problem with this top-down measure is that far fewer analysts forecast this

quantity, making it less attractive compared to our bottom-up measure. While our preferred measure of

aggregate disagreement is constructed using thousands of individual stock forecasts, on average, only 20

or so analysts in the sample cover the S&P 500 EPS. Our second alternative proxy is an index of the

dispersion of macro-forecasts from the Survey of Professional Forecasters (SPF). More precisely, we use
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the first principal component of the cross-sectional standard deviation of forecasts on GDP, industrial

production (IP), corporate profit and unemployment from Li and Li (2014).

To simplify the reading of the tables in the paper, all of our time-series measures of aggregate disagree-

ment are standardized to have zero mean and a variance of one. Table II presents summary statistics

on the time-series variables used in the paper. Figure 1 plots the time series of our baseline disagreement

measure. It peaks during the 1981 to 1982 recession, the dot-com bubble of the late 1990s, and the recent

recession of 2008. When fundamentals are more uncertain, there is more scope for disagreement among

investors. In other words, the aggregate disagreement series is not the same as the business cycle, as we

see high disagreement in both growth and recessionary periods.

[ Insert Table II here ]

In Figure 5, we highlight the role played by aggregate disagreement on the relationship between

stock-level disagreement and β. This figure is constructed as follows. We divide our time series into high-

aggregate-disagreement months (diamonds) and low-aggregate-disagreement months (triangles), where

high- (low-) aggregate disagreement months are defined as those in the top (bottom) quartiles of the

in-sample distribution of aggregate disagreement. Then, for each of our 20 β-sorted portfolios, we plot the

value-weighted average of the stock-level dispersion in analyst earnings forecasts against the post-ranking

full-sample β of the value-weighted portfolio. Stock-level disagreement increases with β. Moreover, this

relation is steeper in months with high aggregate disagreement relative to months with low aggregate

disagreement. Thus, consistent with the premise of our model, we find that β does scale up aggregate

disagreement.

[ Insert Figure 5 here ]

III. Empirical Analysis

A. Aggregate Disagreement and the Concavity of the Security Market Line

A.1. Main Analysis

Our empirical analysis examines how the Security Market Line is affected by aggregate disagreement.

To this end, in Figure 6 we first present the empirical relationship between β and excess returns. For each of
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the 20 β portfolios in our sample, we compute the average excess forward return for high- (diamonds) and

low- (triangles) disagreement months (defined as top versus bottom quartile of aggregate disagreement).

Given the persistence in aggregate disagreement, we run this analysis using several horizons: 3 months

(Panel A), 6 months (Panel B), 12 months (Panel C), and 18 months (Panel D). The portfolio returns

r
(k)
P,t for k = 3, 6, 12, and 18 are value-weighted.

While the relationship between excess forward returns and β is quite noisy at the 3- and 6-month

horizons, two striking facts emerge at the 12- and 18-month horizons. First, the average excess returns-

to-β relationship is mostly upward-sloping for months with low aggregate disagreement, except for the

top β portfolio which exhibits a somewhat lower average return. This result is generally consistent with

our theory, which holds that low aggregate disagreement means low or even no mispricing and hence a

strictly upward-sloping Security Market Line. Second, in months of high aggregate disagreement, the

excess returns-to-β relationship appears to exhibit the inverted-U shape predicted by the theory.

[ Insert Figure 6 here ]

To formally test our Prediction 1, we run the following two-stage Fama and MacBeth (1973) regressions

in Table III . Each month, we first estimate the following cross-sectional regression over our 20 β-sorted

portfolios:

r
(12)
P,t = κt + πt × βP + φt × (βP )2 + εP,t, where P = 1, ..., 20,

where r(12)
P,t is the 12-month excess return of the P th beta-sorted portfolio and βP is the full-sample post-

ranking beta of the P th beta-sorted portfolio.21 We retrieve from this analysis a time series of coefficient

estimates for κt, πt, and φt. Note that our analysis focuses here on 12-month returns. Since our aggregate

disagreement variable is persistent, our results tend to be stronger over longer horizons (Summers (1986),

Campbell and Shiller (1988)). For robustness, in Table IAII we present the results from a similar analysis

using different horizons.

[ Insert Table III here ]

The time series of coefficient estimates φt is the dependent variable of interest in our analysis. Given

the post-ranking β of our β-sorted porftolios, this φt series corresponds to the excess returns on a portfolio

that goes long the two bottom β portfolios (P=1 to 2) as well as the two top β portfolios (P=19 and 20)
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and short the remaining portfolios. As we explain in Section I.C, this portfolio’s returns capture, each

month, the concavity of the Security Market Line. Prediction 1 states that when aggregate disagreement

is higher, this portfolio should have significantly lower returns.

To examine the evidence in support of Prediction 1, in a second stage, we regress the φt time series on

Agg.Disp.t−1 only (Column (1)), where Agg.Disp. stands for the monthly β-weighted average stock level

disagreement introduced in Section II.C and is measured in month t−1. Noxy-Marx (2014) shows that the

returns on defensive equity strategies load significantly on standard risk factors. Although our portfolio

of interest is not a slope portfolio but rather the square portfolio, in Column (2) we nonetheless follow

Noxy-Marx (2014) and control for the 12-month returns of the Fama and French (1992) factors and the

Jegadeesh and Titman (1993) momentum factor measured in month t.22 Column (3) adds the dividend-

to-price ratio D/Pt−1 and the year-over-year inflation rate measured in month t− 1, Inflationt−1, from

Cohen et al. (2005). Column (4) adds the TedSpread measured in month t−1 from Frazzini and Pedersen

(2014). Columns (5) to (8) and (9) to (12) rerun the above analysis after replacing the dependent variables

with, respectively the estimated κt and πt. In these estimations, standard errors are Newey and West

(1987) adjusted and allow for 11 lags of serial correlation.

Panel A of Table III presents the results from the second-stage regressions using value-weighted

portfolios. A higher Agg.Disp.t−1 is associated with a smaller φt, that is, a more concave Security Market

Line, or equivalently, lower average returns of the square portfolio. The t-statistics are between -1.9 to -4

depending on the specification. Importantly, the estimate is significant by itself even without any controls,

although the inclusion of the D/P ratio and the year-over-year past inflation rate increases the effect of

aggregate disagreement on the concavity of the Security Market Line.

Interestingly, we see in Table III that a higher return on the high-minus-low portfolio (HML) from t to

t+11 is correlated with a more negative φt – a more concave Security Market Line. We believe this result

is consistent with a simple extension of our model. Note first that, even in the absence of disagreement,

our model generates a value-growth effect through risk – high-risk stocks have lower prices and higher

expected returns (Berk (1995)). To abstract from this effect, one can simply define the fundamental

value of a stock as its expected dividend minus its risk premium – F = d − 1
γ

(
biσ

2
z + σ2

ε
N

)
. This is the

fundamental price an investor would expect to pay for the stock based purely on risk-based valuation.

As in Daniel et al. (2001), we then define the price-to-fundamental ratio as P − F and the return on the
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high-minus-low HML portfolio as the return of the long-short portfolio that goes long the stock with the

lowest price-to-fundamental ratio and short the stock with the highest price-to-fundamental ratio. In our

static model, as long as bNω(λ) > σ2
ε
N , this ratio corresponds to the return on a portfolio short asset N and

long any asset k ∈ [1, ī− 1]. The return on this portfolio is given by (bk − bN ) σ
2
z
γ + θ

γ

(
bNω(λ)σ2

z − σ2
ε
N

)
.

In particular, the return on this HML portfolio is strictly increasing with λ. Thus, a larger return on the

HML portfolio will be associated with a smaller slope of the Security Market Line. Empirically, to the

extent that our proxy for aggregate disagreement λ is measured with noise, we should thus expect the

return to HML to have a significant and negative correlation with the concavity of the Security Market

Line. This is precisely what we observe in Columns (2), (3), and (4) of Table III . This result, although

not the main point of the paper, is novel in that it connects the failure of the CAPM to HML through

time-variation in aggregate disagreement.

In contrast, we see that the a larger contemporaneous return on SMB corresponds to a more convex

Security Market Line. Inflation comes in with a negative sign — the higher is inflation, the more concave

or flatter the Security Market Line. The TedSpread is not significantly related to the concavity of the

Security Market Line. Panel B of Table III presents the results from a similar analysis using equal-

weighted β-sorted portfolios. The results in Panel B are quantitatively similar to those in Panel A, with a

higher level of statistical significance. Overall, consistent with Prediction 1, we find that a higher level of

aggregate disagreement is associated with a more concave Security Market Line in the following months.

A.2. Robustness Checks

In the Internet Appendix, we present results of a battery of robustness checks for the above results.23

In Table IIAI, we show analogous results to Table III but the pre-ranking βs are now estimated by

regressing monthly stock returns over the past three years the contemporaneous market returns. The

results are quantitatively very similar to those in Table III .

In Table IIAII, we use different horizons for the portfolio returns used in the first-stage regression –

namely 1, 3, 6, and 18 months. While the effect of disagreement on the concavity of the Security Market

Line is insignificant when using a 1- or 3-month horizon (but of the right sign), it is significant when

using a 6- or 18-month horizon. Note that once D/Pt−1 and Inflationt−1 are included in the regression,

aggregate disagreement becomes significantly negatively correlated with the concavity of the Security
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Market Line at all horizons. The fact that the short-horizon results are weaker is to be expected given the

literature on long-horizon predictability associated with persistent predictor variables and the fact that

Agg.Disp. is persistent.

In Table IIAIII, we use the alternative measures of aggregate disagreement introduced in Section II.C.

In Panel A, aggregate disagreement is constructed using pre-ranking compressed β (i.e., β = 0.5 β̂ + 0.5)

to weight the stock-level disagreement measure. In Panel B, we use β × value-weights to define aggregate

disagreement. In Panel C, disagreement is the “top-down” measure of market disagreement used in Yu

(2011), which is calculated as the standard deviation of analyst forecasts of annual S&P 500 earnings,

scaled by the average forecast on S&P 500 earnings. In Panel D, disagreement is the first principal

component of the monthly cross-sectional standard deviation of forecasts on GDP, IP, corporate profit and

the unemployment rate in the SPF and is taken from Li and Li (2014). All these series are standardized

to have mean zero and variance one. In all specifications, especially those that include the additional

covariates, we get results that are quantitatively similar to our baseline results presented in Table III ,

although all of the estimated coefficients are less significant than in our baseline specification.24

A potential concern with our analysis is that the results are simply a recast of the results in Diether

et al. (2002): high-beta stocks experience more idiosyncratic disagreement, especially in high-aggregate-

disagreement months, so that the effect of aggregate disagreement on the Security Market Line works

entirely through idiosyncratic disagreement. In Table IIAIV, we show that this is not the case. Specifically,

we replicate the analysis of Table IIII , but in the first-stage regression we now control for the logarithm

of the average disagreement on the stocks in each of the 20 β-sorted portfolios. Again, our results are

virtually unchanged by inclusion of this additional control in the first-stage regression.

Additional empirical concerns with the analysis in Table III are that (1) high-beta stocks have higher

idiosyncratic volatility, (2) idiosyncratic stocks have lower returns (Ang et al. (2006)), and (3) perhaps

especially when aggregate disagreement is high. In Section III.B, we test the asset pricing equation

from our model when dividends are allowed to be heteroskedastic. However, we can also amend our

methodology to include, in the first-stage regression, a control for the median idiosyncratic volatility of

stocks in each of the 20 β-sorted portfolios.25 The results are presented in Table IIAV. The point estimates

are quantitatively similar to those obtained in Table III , although the statistical significance is slightly

lower (t-statistics ranging from 1.6 to 2.4 in the value-weighted specification and from 2 to 2.6 in the
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equal-weighted specification). Our main finding is thus robust to controlling directly, in the first-stage

regressions, for the idiosyncratic volatility of the stocks included in the 20 β-sorted portfolios.

A.3. Disagreement and the Slope of the Security Market Line

Corollary 3 shows that the slope of the Security Market Line should decrease with aggregate disagree-

ment. Although we argue in Section I.C that this is a weaker test of our model – since it fails to account

for the kinks in the Security Market Line predicted in the model – in Table IIAVI we nonetheless present

a test for this prediction. This test is again a two-stage procedure. In the first stage, each month we

regress the excess return on the 20 β-sorted portfolios on their post-ranking full-sample β:

r
(12)
P,t = κt + πt × βP + εP,t, P = 1, ..., 20.

Here, πt, the slope of the Security Market Line in month t, is the variable of interest. More specifically,

πt represents the 12-month excess return of a “slope” portfolio in month t – a portfolio that goes long

the portfolios with above-average β and short the portfolio with below-average β. Column (1) of Table

IIAVI shows that by itself, aggregate disagreement in month t− 1 predicts a significantly flatter Security

Market Line in the following month. In Column (2), we see that introducing the contemporaneous four-

factor return in the regression absorbs most of the effect of disagreement on the slope of the Security

Market Line. However, we also see in this column, as well as in Columns (3) and (4) that a higher high-

minus-low 12-month return in month t is associated with a significantly flatter Security Market Line at

t.26 As we explain above, this result is a natural prediction of our model, since aggregate disagreement

leads to the mispricing of high-beta securities, which then mean-revert. Interestingly, the inclusion of

D/Pt−1 and Inflationt−1 in Columns (3) and (4) makes the effect of aggregate disagreement on the

slope of the Security Market Line significant again. Consistent with Cohen et al. (2005), a higher level

of Inflationt−1 leads to a flatter Security Market Line. As in Frazzini and Pedersen (2014), TedSpread

does not significantly explain the average excess return of the slope portfolio.
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B. Heteroskedastic Idiosyncratic Variance

We now turn our attention to our main test for Prediction 2, which holds that the slope of the Security

Market Line is more sensitive to aggregate disagreement for stocks with a high βi/σ2
i ratio relative to stocks

with a low βi/σ
2
i ratio.

To test this prediction, we need to ascribe a value for the threshold βī
σ2
ī

defining speculative and

nonspeculative stocks. Our strategy is to use as a baseline specification a threshold corresponding to the

median βi
σ2
i
ratio and then to assess the robustness of the results to this particular choice. More precisely,

our test for Prediction 2 is based on a three-stage approach. In the first stage, we rank stocks each month

based on their pre-ranking ratio of β to σ2 and define as speculative (nonspeculative) stocks all stocks with

a ratio above (below) the NYSE median ratio: β̂i
σ̂2
i
> NYSE median β̂

σ̂2 ( β̂i
σ̂2
i
≤ >NYSE median β̂

σ̂2 ). This

creates two groups of stocks for each month t: speculative and nonspeculative. Then, within each of these

two groups, we re-rank stocks in ascending order based on their estimated beta at the end of the previous

month and assign them to one of 20 beta-sorted portfolios again using NYSE breakpoints. We compute

the full-sample beta of these 40 value-weighted portfolios (20 beta-sorted portfolios for speculative stocks

and 20 beta-sorted portfolios for nonspeculative stocks) using the same market model. The resulting

full sample beta is given by βP,s, where P = 1, . . . , 20 and s ∈ {speculative, nonspeculative}. Table IV

presents descriptive statistics for the resulting 40 portfolios. We see that (1) the constructed portfolios

generate significant spreads in the post-ranking full-sample βs and ex post, (2) the β/σ2 ratio of the

β-sorted portfolios created from speculative stocks is much higher than that of the β-sorted portfolios

created from nonspeculative stocks: the average β/σ2 ratio for speculative stocks is 0.61 while it is only

0.25 for nonspeculative stocks.27

[ Insert Table IV here ]

Next, for each of these two groups of portfolios (s ∈ {speculative, nonspeculative}), each month we

estimate the following cross-sectional regressions, where P is one of the 20 β-sorted portfolios, and t is a

month:

r
(12)
P,s,t = ιs,t + χs,t × βP,s + %s,t × ln (σP,s,t−1) + εP,s,t,
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where σP,s,t−1 is the median idiosyncratic volatility of stocks in portfolio (P, s) estimated at the end of

month t − 1 and r
(12)
P,s,t is the value-weighted 12-month excess return of portfolio (P, s). In contrast to

βP,s, σ2
P,s,t−1 has a large skew, so we use the logarithm of σP,s,t−1 in the cross-sectional regressions to

limit the effect of outliers on the regression estimates. We retrieve a time series of monthly estimated

coefficients: ιs,t, χs,t and %s,t. Finally, as we do for Table III , in a third stage we regress each of these

series on Agg.Disp.t−1, the contemporaneous four-factor alphas (Rm,t, HMLt, SMBt, and UMDt), and

a set of additional forecasting variables measured in month t − 1, namely, D/Pt−1, Inflationt−1, and

TedSpreadt−1. Standard errors are Newey and West (1987) adjusted and allow for 11 lags of serial

correlation.

Figure 7 summarizes our findings graphically. In this figure, we compute for the 20 β-sorted portfolios

constructed from speculative stocks (Panel B) and the 20 β-sorted portfolios constructed from nonspecu-

lative stocks, the average excess 12-month return for high- (diamonds) and low- (triangles) disagreement

months (defined as top versus bottom quartile of aggregate disagreement). For nonspeculative stocks, we

see that the Security Market Line is not related in a clear way with aggregate disagreement. For specu-

lative stocks, however, Figure 7 suggests that when aggregate disagreement is high, the Security Market

Line exhibits an inverted-U shape while there is no such kink in months with low aggregate disagreement.

This first pass at the data is consistent with Prediction 2, which holds that aggregate disagreement makes

the Security Market Line flatter only for speculative stocks.

[ Insert Figure 7 here ]

Table V reports results from the actual regression analysis. Panel A of this table reports the estimation

results of the third-stage regression when using portfolios constructed from speculative stocks. Panel B

presents results from portfolios constructed from nonspeculative stocks. The first four columns provide the

estimation results for our main coefficient of interest χs,t, which measures the slope of the Security Market

Line conditional on the idiosyncratic variance of portfolios. Consistent with Prediction 2, an increase in

aggregate disagreement in month t − 1 is associated with a significantly flatter Security Market Line –

holding portfolio variance constant – only in Panel A, that is, only for stocks with a β/σ2 ratio above the

NYSE median ratio. In Panel B, where the portfolios are formed from stocks with a β/σ2 ratio below the

NYSE median ratio, aggregate disagreement is not significantly related to the slope of the SML. Across

our four specifications, which add additional controls, including the contemporaneous four-factor returns,
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the results are similar: higher aggregate disagreement in month t− 1 leads to a significantly flatter slope

of the Security Market Line (with t-statistics ranging from 2.1 to 2.9) when β-sorted portfolios are formed

using speculative stocks, while there is no significant relationship between aggregate disagreement and

the slope of the Security Market Line for these portfolios constructed using nonspeculative stocks. These

results are consistent with Prediction 2.

Columns (5) to (8) of Table V present the regression estimates when %s,t is the dependent variable,

where %s,t represents the effect of (log) idiosyncratic variance on the returns of these β-sorted portfolios.

Our model predicts that for speculative stocks, stocks with high idiosyncratic variance should have higher

expected returns, especially when aggregate disagreement is high. In Panel A, Columns (5) to (8), we see

that both the constant and the coefficients on Agg.Disp.t−1 are positive, consistent with our model, but

they are not statistically significant. In some of the specifications below (most notably, the specification

using equal-weighted portfolios), we find that these coefficients are not only positive but also statistically

significant. However, Table V shows that our model does not fully capture how idiosyncratic variance is

priced in the cross-section of stock returns.

In Panel B, we find that (1) idiosyncratic variance has no significant effect on the returns of β-sorted

portfolios constructed from nonspeculative stocks (the constant is insignificant and small in magnitude),

and for these nonspeculative portfolios, (2) an increase in disagreement is associated with a lower effect

of idiosyncratic variance on the returns of these β-sorted portfolios (this effect is insignificant in all but

Column (6) where the t-statistic is 1.8). This negative sign is inconsistent with our model since, in

the model, nonspeculative stocks should have returns that are independent of aggregate disagreement.

However, in differential terms, these results could be reconciled with the model to the extent that they

show that the effect of aggregate disagreement on the price of idiosyncratic variance is significantly larger

for speculative stocks than for nonspeculative stocks.

[ Insert Table V here ]

We confirm the robustness of this analysis by performing a battery of additional tests. In Table VI

, we use equal-weighted portfolios instead of value-weighted portfolios. We obtain even more supporting

evidence in that the coefficients of interest are both economically larger and statistically more significant.

As mentionned above, we even find some support with these equal-weighted portfolios for the prediction

31



relating aggregate disagreement to the price of idiosyncratic variance.

[ Insert Table VI here ]

In Table IIAVII, the pre-ranking βs are estimated by regressing monthly stock returns over the past

three years on contemporaneous market returns. The results are essentially similar. In Table IIAVIII, we

rerun the analysis of Table V using portfolio returns over a horizon of 1, 3, 6, and 18 months. The results

are not statistically significant using the one-month horizon. However, for the three-month horizon and

above, the results are consistent with the baseline 12-month horizon result shown in Table V : overall,

the prediction that aggregate disagreement leads to a flatter Security Market Line for speculative stocks

is strongly supported in the data, while the prediction relating aggregate disagreement to the price of

idiosyncratic risk finds only mixed support.28

Our analysis so far has used an arbitrary cutoff to define speculative stocks, namely, the median

NYSE β/σ2 ratio. In Figure 8, we rerun the analysis to performed in Table V but we use different

cutoffs to define speculative versus nonspeculative stocks. For each of these cutoffs, we plot the coefficient

estimate of the regression of aggregate disagreement on the slope of the SML χs,t, obtained from the

specification in Column (2), which includes only the realized four-factor returns as controls. We select

this specification as it typically yields the smallest point estimates. The left (right) panel displays the

results obtained for portfolios formed from speculative (nonspeculative) stocks. The cut-offs we use range

from the 30th percentile to the 70th percentile of the NYSE distribution of the βi/σ2
i ratio. Across all of

these specifications, we consistently find that aggregate disagreement leads to a flatter Security Market

line only for speculative stocks. The effect of disagreement on the slope of the Security Market Line for

speculative stocks becomes larger (in absolute value) as the threshold to define speculative stocks becomed

more conservative.

[ Insert Figure 8 here ]

IV. Conclusion

We show that incorporating the speculative motive for trade into asset pricing models yields strikingly

different results from the risk-sharing or liquidity motives. High-beta assets are more speculative be-

cause they are more sensitive to disagreement about common cash flows. Hence, they experience greater
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divergence of opinion and, in the presence of short-sales constraints for some investors, end up being

overpriced relative to low-beta assets. When aggregate disagreement is low, the risk-return relationship

is upward-sloping. As aggregate disagreement rises, the slope of the Security Market Line is piecewise

constant, higher in the low-beta range and potentially negative for the high-beta range. Empirical tests

using measures of disagreement based on security analyst forecasts are consistent with these predictions.

We believe our simple and tractable model provides a plausible explanation for part of the high-risk,

low-return puzzle. The broader thrust of our analysis is to point out that one can construct a behav-

ioral macro-finance model in which aggregate sentiment can influence the cross-section of asset prices in

nontrivial ways.
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Figure 1. Time series of aggregate disagreement. Sample period: 12/1981 to 12/2014. Sample: CRSP stock file
excluding penny stocks (price < $5) and microcaps (stocks in bottom two deciles of the monthly size distribution using
NYSE breakpoints). Each month, we calculate for each stock the standard deviation of analyst forecasts of long-run growth
in EPS, our measure of stock-level disagreement. We also estimate for each stock i β̂i,t−1, the stock market beta of stock
i at the end of the previous month. These betas are estimated with a market model using daily returns over the past
calendar year and five lags of the market returns. Aggregate disagreement is the monthly β̂i,t−1-weighted average stock-level
disagreement.
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k�ī bk⇡

k

�2
✏ + �2

z

⇣PN
k=1 b2

k

⌘ = ⇡i � bi
�2

z

�2
✏ + �2

z

⇣PN
k=1 b2

k

⌘

0
@
0
@X

k�ī
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i�ī bi

⌘

�2
✏ + �2

z

⇣PN
i=1 b2

i

⌘

1
A� 1

N

�2
✏ + �2

z

�P
k<ī b2
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b2
k � bi

X

k�ī
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i < 0 , i � ĩ.
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b2
k

1
A
0
@⇡

i +
✓�2

✏

�N

bi

1
A� ✓�2

✏

�N

0
@X

k�ī

bk

1
A
1
A

= ⇡i �
2
✏ + �2

z

�P
k<ī b2
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8i � ī, µa
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Figure 2. Security Market Line for different levels of aggregate disagreement.

38



Dividend dt is 
realized 

-  New generation t is 
born and invests 

-  Disagreement 
shock for new 
generation is 
realized (λ) 

-  Old generation sell 
portfolio and 
consumes 

 

Period t 

Figure 3. Timeline of the dynamic model of Section I.G.
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Figure 4. Calibration of the dynamic model. This figure plots the Security Market Line in the high-aggregate-
disagreement state (diamonds) and in the low-aggregate-disagreement state (stars) obtained from the simulation of the
dynamic model. Across simulations, we use the following parameters: θ = 0.5, N = 50 and ρ = 0.95. Each of the four panels
set a value of λ (0.008 in Panel A, 0.013 in Panel B, 0.022 in Panel C and 0.05 in Panel D) and then finds the values of σ2

z ,
σ2
ε , and γ that match the empirical average idiosyncratic variance of monthly stock returns, the empirical variance of the

monthly market return, and the empirical average return on the market portfolio over the sample period.
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Figure 5. Stock-level disagreement and β. Sample period: 12/1981 to 12/2014. Sample: CRSP stock file excluding
penny stocks (price < $5) and microcaps (stocks in bottom two deciles of the monthly size distribution using NYSE
breakpoints). At the beginning of each calendar month, stocks are ranked in ascending order on the basis of their estimated
beta at the end of the previous month. Pre-formation betas are estimated with a market model using daily returns over
the past calendar year and five lags of the market returns. The ranked stocks are assigned to one of 20 portfolios based
on NYSE breakpoints. The graph plots the value-weighted average stock-level disagreement of stocks in the 20 β-sorted
portfolios for months in the bottom quartile of aggregate disagreement (triangles) and months in the top quartile of aggregate
disagreement (diamonds). Stock-level disagreement is the standard deviation of analysts’ forecasts of long run EPS growth.
Aggregate disagreement is the monthly β-weighted average of this stock-level disagreement measure.
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Panel A. 3-Month Value-Weighted return Panel B. 6-Month Value-Weighted Return

Panel C. 12-Month Value-Weighted Return Panel D. 18-Month Value-Weighted Return

Figure 6. Excess returns, β and aggregate disagreement. Sample Period: 12/1981 to 12/2014. Sample: CRSP
stock file excluding penny stocks (price < $5) and microcaps (stocks in bottom two deciles of the monthly size distribution
using NYSE breakpoints). At the beginning of each calendar month, stocks are ranked in ascending order on the basis
of their estimated beta at the end of the previous month. Pre-formation betas are estimated with a market model using
daily returns over the past calendar year and five lags of the market returns. The ranked stocks are assigned to one of 20
value-weighted portfolios based on NYSE breakpoints. The graph plots the average excess return over the next 3 months
(Panel A), 6 months (Panel B), 12 months (Panel C), and 18 months (Panel D) of the 20 β-sorted portfolios for months in the
bottom quartile of aggregate disagreement (triangles) and months in the top quartile of aggregate disagreement (diamonds).
Aggregate disagreement is the monthly β-weighted average of stock-level disagreement measured as the standard deviation
of analyst forecasts of long-run EPS growth.
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Panel A. 12-Month Value-Weighted Return for Nonspeculative Stocks

Panel B. 12-Month Value-Weighted Return for Speculative Stocks

Figure 7. Excess returns, β, and aggregate disagreement: speculative vs. nonspeculative stocks. Sample
period: 12/1981 to 12/2014. Sample: CRSP stock file excluding penny stocks (price < $5) and microcaps (stocks in bottom
two deciles of the monthly size distribution using NYSE breakpoints). At the beginning of each calendar month, stocks
are ranked in ascending order on the basis of the estimated ratio of beta to idiosyncratic variance ( β

σ2 ) at the end of the
previous month. Pre-formation betas and idiosyncratic variance are estimated with a market model using daily returns over
the past calendar year and five lags of the market return. The ranked stocks are assigned to two groups: speculative stocks
( β̂i
σ̂2
i
> NYSE median β̂

σ̂2 in month t) and nonspeculative stocks. Within each of these two groups, stocks are then ranked
in ascending order of their estimated beta at the end of the previous month and are assigned to one of 20 value-weighted
beta-sorted portfolios based on NYSE breakpoints. The graph plots the average excess return over the next 12 months for
the 20 β-sorted portfolios for months in the bottom quartile of aggregate disagreement (triangles) and months in the top
quartile of aggregate disagreement (diamonds). Aggregate disagreement is the monthly β-weighted average of stock-level
disagreement measured as the standard deviation of analyst forecasts of long-run EPS growth. Panel A plots these excess
returns for nonspeculative stocks, Panel B for the speculative stocks.43
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Table II
Summary Statistics for Time-Series Variables

To construct Agg. Disp, we start from the CRSP stock file excluding penny stocks (price < $5) and
microcaps (stocks in bottom two deciles of the monthly size distribution using NYSE breakpoints). Each
month, for each stock we calculate the standard deviation of analysts’ forecasts of long-run EPS growth,
which is our measure of stock-level disagreement. We also estimate for each stock i β̂i,t−1, the stock market
beta of stock i at the end of the previous month. These betas are estimated with a market model using
daily returns over the past calendar year and five lags of the market return. Agg. Disp. is the monthly
β̂i,t−1-weighted average of stock-level disagreement. Agg. Disp. (compressed) uses 0.5β̂i+0.5 as the weight
for stock i instead of β̂i. Agg. Disp (β× Value Weight) uses β̂i× (Market Value)i as the weight for stock i
instead of β̂i. Top-down Disp. is the monthly standard deviation of analysts’ forecasts of annual S&P 500
earnings, scaled by the average forecast of S&P 500 earnings. SPF Disp. is the first principal component
of the standard deviation of forecasts for GDP, IP, corporate profit and the unemployment rate in the SPF
and is taken from Li and Li (2014). These measures of aggregate disagreement are standardized to have
an in-sample mean of zero and a standard deviation of one. D/P is the aggregate dividend-to-price ratio
from Robert Shiller’s website. R(12)

m,t , SMB(12)
t , HML(12)

t , UMD(12)
t are the 12-month monthly returns on

the market, SMB, HML, and UMD portfolios from Ken French’s website and are expressed in %. TED is
the TED spread and Inflation is the yearly inflation rate. The sample period is from 12/1981 to 12/2014,
and summary statistics are displayed for months in which both Agg. Disp and R(12)

m,t are nonmissing.

Mean Std. Dev. p10 p25 Median p75 p90 Obs.
Agg. Disp. -0.00 1.00 -0.96 -0.79 -0.21 0.42 1.28 385
Agg. Disp. (compressed) 0.00 1.00 -1.04 -0.79 -0.16 0.57 1.46 385
Agg. Disp. (β × Value weight) 0.00 1.00 -1.00 -0.84 -0.33 0.67 1.47 385
Top-down Disp. 0.00 1.00 -0.43 -0.37 -0.27 -0.13 0.64 353
SPF Disp. 0.00 1.00 -1.00 -0.78 -0.14 0.44 1.06 361
R(12)
m,t 8.82 16.95 -15.47 0.41 10.53 19.73 27.93 385

SMB(12)
t 1.23 9.91 -9.46 -5.32 0.18 6.93 14.11 385

HML(12)
t 3.96 13.32 -10.45 -4.52 3.11 10.77 17.50 385

UMD(12)
t 7.15 16.56 -9.29 -0.91 7.58 16.92 25.53 385

D/P 2.58 1.09 1.41 1.76 2.17 3.24 4.21 385
Inflation 0.03 0.01 0.01 0.02 0.03 0.03 0.04 385
TED spread 0.72 0.57 0.20 0.32 0.56 0.91 1.34 385
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Notes

1A non-exhaustive list of studies includes Blitz and Vliet (2007), Cohen et al. (2005), and Frazzini and Pedersen (2014).
2The value-growth effect (Fama and French (1992), Lakonishok et al. (1994)), buying stocks with low price-to-fundamental

ratios and shorting those with high ratios, generates a reward-to-risk or Sharpe (1964) ratio that is two-thirds of a zero-

beta-adjusted strategy of buying low-beta stocks and shorting high-beta stocks. The corresponding figure for the momentum

effect (Jegadeesh and Titman (1993)), buying the past year’s winning stocks and shorting the past year’s losing stocks, is

roughly three-fourths of the long low-beta, short high-beta strategy.
3Indeed, most behavioral models would not deliver such a pattern. In Barberis and Huang (2001), mental accounting by

investors still leads to a positive relationship between risk and return. The exception is the model of overconfident investors

and the cross-section of stock returns in Daniel et al. (2001), which might yield a negative relationship as well but not the

new patterns for beta that we document below.
4See Hong and Stein (2007) for a discussion of the various rationales. A large literature starting with Odean (1999) and

Barber and Odean (2001) argues that retail investors engage in excessive trading due to overconfidence.
5See Lamont (2004) for a discussion of the many rationales for the bias against shorting in financial markets, including

historical events such as the Great Depression in which short-sellers were blamed for the crash of 1929.
6A general disagreement structure about both means and covariances of asset returns with short-sales restrictions in a

CAPM setting is developed in Jarrow (1980). He shows that short-sales restrictions in one asset might increase the prices of

others. It turns out that a focus on a simpler one-factor disagreement structure about common cash flows yields closed-form

solutions and a host of testable implications for the cross-section of asset prices that would otherwise not be possible.
7High-beta stocks might also be more difficult to arbitrage because of incentives for benchmarking and other agency

issues (Brennan (1993), Baker et al. (2011)).
8When aggregate disagreement is so large that pessimists are sidelined on all assets, the relationship between risk and

return is downward-sloping as the entire market becomes overpriced. We assume that all assets in our model have a strictly

positive loading on the aggregate factor. Thus, it is always possible that pessimists want to be short an asset, provided

aggregate disagreement is large enough.
9The “square” portfolio, which corresponds to the monthly coefficient estimate of a regression of portfolio returns on

the portfolio’s β2, is a portfolio that goes long the top three and bottom six β-sorted portfolios and short the remaining

portfolios. It thus captures intuitively the inverted-U shape of the Security Market Line in our theoretical analysis.
10This normalization of supply to 1/N is without loss of generality. If asset i is in supply si, then what matters is the

ranking of assets along the bi
si

dimension. The rest of the analysis is then unchanged.
11The condition defining the marginal asset ī, ī = min {k ∈ [0, N + 1] | λ > uk}, corresponds to an N -asset generalization

of the condition defining the equilibrium with short-sales constraints in the one-asset model of Chen et al. (2002). The

intuition for this condition is that disagreement has to be larger than the risk premium for bearing the risk of an asset for

short-sales constraints to bind, as otherwise, even pessimists would like to be long the risky asset. The sequence (ui), which

plays a key role in this condition, corresponds to the pessimists’ equilibrium holding in asset i. Naturally, the ui’s depend
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on the risk tolerance γ, the supply of risky assets 1/N and the covariance of asset i with other assets.
12The derivation of this formula can be found in Internet Appendix Section I.D.
13Most of the assumptions made in this model are discussed in Section I.A in the context of our static model.
14λat = 0, λAt = λ, and λBt = −λ when λ̃t = λ or λat = λAt = λBt = 0 when λ̃t = 0 and λat = 0.
15In the low-disagreement state, λ̃ = 0 so there is no disagreement among investors and hence there cannot be any binding

short-sales constraint.
16In a simple three-asset version of this model with trading costs, we can show that mispricing is in fact increasing with λ.
17We perform calibrations using N = 25 and N = 75 and find similar qualitative results.
18The volatility and average excess return on the market are computed directly from the monthly market return series

obtained from Ken French’s website. To compute the average idiosyncratic variance of stock returns, we first estimate a

CAPM equation for each stock in our sample using monthly excess returns, we then compute the variance of the residuals

from this equation for each stock. Finally, we define the average idiosyncratic variance as the average of these variances

across all stocks in our sample.
19The pre-ranking β’s are constructed as detailed in Section II.B.
20In Table I.IAIII, we show that our main results are robust to weighting using compressed betas and weighting using the

product of beta and size. These measures also use pre-ranking betas.
21We also check hermite polynomials in this specification but the quadratic functional fits the best.
22Noxy-Marx (2014) also shows that a significant part of the returns on defensive equity strategies is driven by exposure

to a profitability factor. In unreported regressions, available from the authors upon request, we show that the inclusion of

this additional factor does not affect our results.
23The Internet Appendix is available in the online version of this article on the Journal of Finance website.
24In addition, Li (2014) tests our model using dispersion of macro-forecasts for each of these macro-variables separately.

But rather than using 20 β portfolios, he forms optimal tracking portfolios for each of these macro-variables and calculates

each stock’s macro-beta with respect to these macro-tracking portfolios and finds that when aggregate disagreement is high,

higher macro-beta stocks underperform lower macro-beta stocks.
25We use the logarithm of idiosyncratic volatility as a control variable in the first-stage regression to account for the

skewness in this variable
26This result is consistent with that in Noxy-Marx (2014). The novelty here is that our model proposes an explanation

for this correlation.
27This is true for all but the top β portfolio created from speculative stocks, which has a β/σ2 ratio of 0.25 only. Excluding

this portfolio does not change our analysis qualitatively.
28 This is true except at the 3-month horizon, where the predictions relating aggregate disagreement to the price of β and

the price of idiosyncratic variance are verified.
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